
This program performs three remote method calls to the same
remote object r. The return values from each call are unused
locally, and are merely passed back to the server in the next
call. Hence these three calls can be aggregated into a single
call, reducing the network latency penalty by a factor of three.
We can implement this aggregation using our primitives:

Explicit Code Mobility in Java RMI
Alexander Ahern and Nobuko Yoshida
Department of Computing, Imperial College London.

THE DJ CALCULUS

DJ is a Java-like core language with primitives for distributed
programming and explicit code mobility. These primitives offer
the programmer fine-grained control of type-safe code
distribution, which is crucial for improving the performance and
safety of distributed object-oriented applications.

CODE MOBILITY IN ACTION

In optimisations for sequential languages, we can aim to
improve execution times by removing redundancy and
ensuring our programs exploit features of the underlying
hardware architecture. In distributed programs these are still
valid concerns, but other significant optimisations exist, in
particular how latency and bandwidth overheads can be
reduced. One typical example of this sort, centring on Java
RMI is aggregation:

REFERENCES
A. Ahern and N. Yoshida. Formal Analysis of a Distributed Object-Oriented
Language and Runtime. Technical Report 2005/01, Department of
Computing, Imperial College London: Available at:
http://www.doc.ic.ac.uk/˜aja/dcbl.html, 2005.

A. Ahern and N. Yoshida. Formalising Java RMI with Explicit Code Mobility.
Proceedings of the 20th ACM SIGPLAN conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2005).

•Batched Futures [Liskov]
•RMI call aggregation [Yeung & Kelly]

By bundling together several calls to
remote sites, we can improve the
performance of distributed applications.
Using explicit code mobility, we can model
this kind of optimisation faithfully in DJ.

•Emerald [Hutchinson et al]
•Obliq [Cardelli]

These object-based languages support
transparent network programming
through object mobility. We can encode
this kind of mobility directly in DJ.

DJ IN CONTEXT
•FJ [Igarashi et al]
•MJ [Bierman et al]

Foundational calculi describing
the semantics of fragments of
Java.

•Manifestations of Java
Dynamic Linking
[Drossopoulou & Eisenbach]

To model class loading
accurately in DJ, investigation of
the actual Java semantics was
required.

•ML, Haskell, Scheme

DJ implements first class
functions using code
“freezing” and “defrosting”
primitives.

DJ

Distributed
object-oriented

languages

π-calculus

Performance
optimisation

Java
semantics

Functional
programming

•A calculus of mobile
processes
[Milner, Parrow & Walker]
•Asynchronous π
[Honda & Tokoro]
•Higher-order π [Sangiorgi]
•Channel dependent types
[Yoshida]

DJ employs techniques from
the π-calculus to model
runtime configurations in a
novel way.

EXPLICIT CODE MOBILITY

DJ provides two primitives for code freezing, which is
analogous to closure creation in a functional language. We
provide the freeze command to allow a programmer to delay
evaluation of an expression, extending the syntax of Java with
two new constructs:

Creation

Mode of freezing Parameter to this
frozen expression

The piece of code that
is frozen for later use

Fresh names for the identifiers
appearing free in this closure

The name (IP address)
of the location that
created this closure

Environment
(variables/objects) the
closure depends upon

Optional set of
classes

int m1(RemoteObject r, int a) {
int x = r.f(a);
int y = r.g(a, x);
int z = r.h(a, y);
return z;

}

// Client
int m1(RemoteObject r, int a) {

thunk<int> t = freeze {
int x = r.f(a);
int y = r.g(a, x);
int z = r.h(a, y);
return z;

};
return r.run(t);

}
// Server
int run(thunk<int> x) {

return defrost(x);
}

e ::= … | freeze[t](T x) { e } | defrost(e, e)

Server

Client

Client

Server

These calls are now local
to the server

IMPLEMENTATION

DJ can be implemented in terms of source-to-source
compilation, taking a program augmented with freeze and
defrost and converting this into plain Java source.

To allow eager class downloading, the class loader used in
normal RMI programs must be replaced. The new class loader
must support the bundles of classes that are sent with our
frozen code.

Use

When we defrost a frozen expression, it is evaluated much
like a method call. The formal parameter is substituted for
its actual value, and the expression executed.

FUTURE WORK

•Code generation and meta-programming in DJ.

•Application to mobile computing platforms.

•Security considerations.

